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Supersymmetry theory of microphase separation in homopolymer-oligomer mixtures
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The mesoscopic structure of periodically alternating layers of stretched homopolymer chains surrounded by
perpendicularly oriented oligomeric tails is studied for systems with both strong~ionic! and weak~hydrogen!
interactions. We focus on the consideration of the distribution of oligomers along the homopolymer chains that
is described by the effective equation of motion with the segment number playing the role of imaginary time.
The supersymmetry technique is developed to consider associative hydrogen bonding, self-action effects,
inhomogeneity, and temperature fluctuations in the oligomer distribution. Making use of the self-consistent
approach allows one to explain experimentally observed temperature dependence of the structure period and
the order-disorder transition temperature and period as functions of the oligomeric fraction for systems with
different bonding strengths. A whole set of parameters of the model used is found for strong, intermediate, and
weak coupled systems being Poly~4-vinyl pyridine!–dodecyl benzene sulfonic acid@P4VP-(DBSA)x], P4VP-
@Zn(DBS)2#x , and P4VP- 3-pentadecyl Phenolx , respectively. A passage from the former two to the latter is
shown to cause a crucial decrease in the magnitude of both parameters of hydrogen bonding and self-action, as
well as the order-disorder transition temperature.
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I. INTRODUCTION

Surfactant-induced mesomorphic structures based on
association between flexible homopolymers and he
functionalized oligomers represent a new class of supra
lecular materials. They exhibit a rich phase behavior due
which they have attracted, during the past decade, cons
able attention of both experimentalists@1–5# and theoreti-
cians @6,7#. Microphase separation is the principal prope
of such systems which results in the formation of orde
mesoscopic structures due to the association between
head group of the oligomer and the corresponding group
the homopolymer, on the one hand, and unfavorable po
nonpolar interactions between the nonpolar tail of the sur
tant molecules and the rest of the system, on the other h

The homopolymer-oligomer systems involve two ma
classes that are relevant to strong ionic bonds and weak
drogen ones. Unlike conventional copolymers where rep
sive blocks are bonded together by covalent bonds, there
various temporary physical interactions which play a cruc
role in the formation of ordered mesophases in such syste
In the ionic bonding systems the degree of association
relatively high, so that the polymer chain resembles a co
copolymer with regularly alternating oligomer side chain
At the same time, for the systems with temperatu
dependent hydrogen bonds the incompatibility must not
so strong to induce separation on a macroscopic level. H
the microphase separation results in the periodic alterna
of the layers of stretched homopolymer chains surrounded
perpendicularly oriented oligomer tails~see Fig. 1!. Similarly
to the conventional copolymer systems, a rich variety
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morphologies~lamellar, cylindrical, spherical, etc.! is shown
to be possible@1#. However, for the sake of simplicity we
will restrict ourselves to lamellar morphology.

FIG. 1. Schematic picture of the homopolymer-oligomer m
crophase separated structure~fluctuations of periodicity are ig-
nored!. The flexible homopolymer chains are pictured as th
curves with functionalized groups~whole circles! where the head
groups of the oligomers~thin tails with heads! are attached. The
structure is evolved along the vertical axis with periodL52l 1D
determined by the oligomer lengthl and the thicknessD of the
homopolymer layer. The number of oligomer groups per homopo
mer ring is put to bex51/3.
©2004 The American Physical Society03-1
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An example of the ionic bonding systems is the mixtu
P4VP-(DBSA)x of the homopolymer atactic poly~4-vinyl
pyridine! ~P4VP! and the surfactant dodecyl benzene s
fonic acid ~DBSA!. Here, owing to the very strong interac
tion, the temperature domain of microphase separation is
bounded from above by association effects@1,2#. The pecu-
liarity of the systems of this type, being polyelectrolyt
surfactant complexes, is that the long space structure pe
is an increasing function of the number oligomer/monom
ratio x ~the number of DBSA groups per pyridine ring!. A
more complicated behavior is inherent in the hydrog
bonded systems which were considered to study the opp
weak-bonding limit@3–5#. Here, the weak interaction caus
an order-disorder transition to a homogeneous hi
temperature state. An example of these systems is give
the mixture P4VP-(PDP)x of the same homopolymer P4V
with 3-pentadecyl phenol~PDP! being the oligomer. In this
case, unlike in the ionic bonding systems, the long sp
period decreases whilex increases. Intermediate behavior
exhibited by the system P4VP-@Zn(DBS)2#x with the oligo-
mer being zinc dodecyl benzene sulfonate Zn(DBS)2, which
forms transition metal coordination complexes with t
monomers of P4VP@2#. Ionic bond weakening due to th
absence of covalently bound charges along the homopoly
chain leads here to a nonmonotonic form of thex depen-
dence of the long space period.

Principally important for our consideration is the decre
ing form of the temperature dependence of the long sp
period for all the above systems@2–5#. However, such char
acter of the dependence appears in hydrogen bonded sys
only within a finite temperature interval bounded by the gla
transition temperatureTg from below and order-disorde
transition temperatureTc from above@3,4#. Here, an increase
of the oligomer/monomer ratiox leads to a nonmonotoni
behavior of the temperatureTc with a maximum near the
point x50.85, deviation from which narrows the temper
ture domainTg–Tc . This domain is the region of our intere
where a purely microphase separated structure is poss
Below the glass transition temperatureTg the crystallization
of the oligomer chains occurs that causes a reduction of
overall volume of the system and a sudden decrease o
long space period@4#.

Microphase separation phenomenon had been extens
studied in the past two decades for a variety of polym
systems including random heteropolymers@8–10#. Theoreti-
cal studies of the homopolymer-oligomer mixtures, being
systems of associating polymers, were proposed by Tan
et al. @6# and Dormidontovaet al. @7# within the random
phase approximation introduced by Leibler@8#. Here, the
total free energy

Ftot5Fho1Fhb ~1!

is written as a sum of two terms,Fho related to the nonasso
ciated homopolymer-oligomer mixture andFhb attributed to
the hydrogen bonding. Then, making use of minimizat
principle with respect to the dependence of the free ene
Ftot on the average fraction of hydrogen bondsX present in
the system, permits to find the temperature dependenceX(T)
02180
-

ot

od
r

n
ite

-
by

e

er

-
ce

ms
s

le.

e
he

ely
r

e
ka

y

and to study possible forms of phase diagrams for both m
rophase and microphase separations. It turned out that
approach gives the real dependence of the long space p
L of the ordered structure on the oligomer/monomer ratio
the system, however, as the fraction of hydrogen bo
monotonically decreases with increase in temperature,
increasing temperature dependence ofL(T) obtained is in
contradiction to the experimental data@4#. This inconsistency
is caused obviously by the roughness of the random ph
approximation used for description of the hydrogen bondi

To avoid this limitation, our approach is based o
the above mentioned analogy between associa
homopolymer-oligomer mixtures and random comb copo
mers taking into account the varying number of oligome
attached to the main chain stochastically. Such a system
be analyzed in terms of the random walk statistics to ap
the field theoretical scheme@11# for the development of the
microscopic theory. The cornerstone of our approach lies
the assumption that the alternation of the homopolymer
sociative groups with and without oligomers attached is l
the alternation of the segments of different types along
chains of a random heteropolymer to be represented a
stochastic variation of the Ising spin, for which the role
imaginary time is played by the number of chain segmentn
@12–14#.

Along this line, the problem under consideration is d
vided into two parts, the first of which is reduced to th
determination of the relation between the long space perioL
and the average fraction of hydrogen bondsX, whereas the
second one is focused on the determination of the freque
v52pX in the distribution of the oligomer heads along th
homopolymer chain. The first part of the problem was stu
ied on the basis of the simplest model@5# that is reduced to
the treatment of the dependenceFho(L) given by the first
term of the free energy~1!. Corresponding consideration de
veloped within the framework of the strong segregation lim
derives to generic relation~A8! for the dependenceL(v)
~see Appendix A!. In this paper, we focus on the secon
problem to be related to the definition of an optimal fr
quencyv that minimizes the second term of the free ener
~1! within the framework of the weak segregation limit.

The formal basis of our treatment is the field theoreti
scheme of stochastic systems, making use of the supers
metry field @11#. Conformably to the polymers, this theor
was proposed in Ref.@15# and developed for the random
copolymers in Refs.@12–14#. Our approach is based on th
Martin-Siggia-Rose method of the generating function
@16#. Power and generality of the supersymmetry fie
scheme were demonstrated for the Sherrington-Kirkpat
model for which they are identical to the replica approa
@17#. The formal basis of the supersymmetry is a nilpote
quantity which represents a square root of 0. In this sen
the superfield is similar to the complex field, in which th
imaginary unit, being square root of21, is used instead o
the anticommuting nilpotent quantity being the Grassma
variable. By definition, the supersymmetry field combin
the commuting boson and anticommuting fermion comp
nents into the unified mathematical construction represen
a vector in the supersymmetry space. Choice of the opti
3-2



a
f

I
th
rg
e

ol
t

ch
o
g
g
tiv

, r
ra
th

rd
ng
yi

he

de
e

qu
es

its

m
da
s
s
sy

e

e
oc

d

se

-
o-

r
ers

de-
he
ed,
ual

u-

f
e

e
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basis of the supersymmetry correlator yields in optimal w
the advanced/retarded Green functions and the structure
tor to obtain microscopic expression for the frequencyv.

The paper is organized in the following manner. Section
contains initial relations of the field scheme used to write
system Lagrangian. It involves the effective potential ene
whose quadratic term describes hydrogen bonding betw
the oligomers and the associative groups of the homop
mer chains, whereas cubic and biquadratic terms relate to
self-action effects. The principal peculiarity of our approa
lies in accounting of the inhomogeneity in the distribution
oligomers along the homopolymer chains. This accountin
caused by the introduction of the effective kinetic ener
whose density is proportional to the square of the deriva
of oligomers distribution over segment numbersn. Due to
the temperature dependence of the hydrogen coupling
lated effective mass is a fluctuating parameter whose ave
ing, along the Hubbard-Stratonovich procedure, arrives at
biquadratic term with respect to the time derivative. Acco
ing to the calculations given in Sec. IV, just this term, bei
considered within the mean-field approach, causes deca
character of the temperature dependenceL(T) of the struc-
ture period. Complication of the problem arising from t
determination of the proper frequencyv is caused by an
essential nonlinearity and coupling the advanced/retar
Green functions and the structure factor. Hence, it is m
thodically convenient to use the supersymmetry techni
that enables to obtain in the simplest way explicit expr
sions for above functions in the long-range limit~see Sec.
III !. The divergency condition of the Green function perm
to find the proper frequencyv with accounting self-action
effects within supersymmetry perturbation theory. A co
parison of the dependencies obtained with experimental
given in Sec. V shows that the scheme developed allow
present in a self-consistent manner the main peculiaritie
the microphase separation in the homopolymer-oligomer
tems with associative coupling.

II. GENERIC FORMALISM

The problem under consideration is addressed to the d
nition of the effective law of motionc(n) that determines a
sequence of oligomer alternation along the homopolym
chain. This is accomplished by means of specifying the
cupation number, beingc(n)51 if oligomer is attached to
the segmentn and c(n)50 otherwise~obviously, the mean
value c̄[c(n) of the occupation number is reduced tox at
the oligomer ratiox<1, while c̄51 for x.1). When the
index of the homopolymer chainN→`, the argumentn may
be considered as a continuous one, and we are venture
start with Euler equation@18#

dS

dc
2

d

dn

dS

d ċ
5

dR

d ċ
, ~2!

where the overdot denotes derivative with respect to the
ment numbern, actionSand dissipative functionalR take the
usual forms
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S$c~n!%[E
0

N

L„c~n!,ċ~n!…dn, R5
Q

2 E0

N

„ċ~n!…2dn,

~3!

being defined by the LagrangianL„c(n),ċ(n)… and the
damping coefficientQ, respectively. The total actionS5K
2P is determined by a ‘‘kinetic’’ contributionK of inhomo-
geneity in the oligomer distribution and ‘‘potential’’ compo
nent P[V01V caused by the interaction between the h
mopolymer and the oligomer,

V05T
t

2E0

N

„c~n!…2dn, ~4!

and self-action contribution

V5TE
0

N

v„c~n!…dn, v[
m

3!
c31

l

4!
c4. ~5!

Here, T is temperature measured in energy units, factot
determines the strength of the hydrogen bonding, multipli
m, l are self-action parameters.

In comparison with the above standard approach, the
termination of the contribution of inhomogeneity along t
polymeric chain is a much more delicate problem. Inde
the bare magnitude can be written in the form of the us
kinetic action

K5T
m

2 E0

NS dc

dnD 2

dn, ~6!

where an effective massm appears as a temperature fluct
ating parameter with mean valuem̄ and variance(m2m̄)2

[s2 ~bar denotes the average, as usual!. Then, after averag-
ing exponent exp(2K/T) over the Gaussian distribution o
the bare massm, we obtain the effective kinetic action in th
following form:

K5K̄1K̃, K̄[T
m̄

2 E0

N

„ċ~n!…2dn, ~7!

K̃[2T
s2

8 E
0

NE
0

N

„ċ~n!…2„ċ~n8!…2dndn8. ~8!

As a result, total action takes the final form

S5T
m̄

2 E0

N

„ċ~n!…2dn2T
s2

8 E
0

NE
0

N

„ċ~n!…2„ċ~n8!…2dndn8

2T
t

2E0

N

„c~n!…2dn2V, ~9!

where self-action potentialV is given by Eqs.~5!. Respec-
tively, Euler equation~2! arrives at the equation of effectiv
motion

~m̄2D̃ !c̈1
Q

T
ċ1tc52v8, ~10!
3-3
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where one notices

v8[T21
dV$c~n!%

dc~n!
5

]v
]c

, D̃[
s2

2 E
0

N

„ċ~n8!…2dn8.

~11!

By introducing the effective massm̃, characteristic numbe
of correlating segmentsnc and d-correlated sourcez(n) in
accordance with definitions

m̃[m̄2D̃, nc[
Q

T
, ~12!

^z~n!&50, ^z~n!z~n8!&5d~n2n8!, ~13!

one obtains Langevin equation of inertial type,

m̃c̈1ncċ52~tc1v8!1z. ~14!

Making use of the field scheme@11# allows to express the
noisez in terms of an additional degree of freedomp being
the momentum conjugated to the effective coordinatec. Fol-
lowing this line, one has to introduce the generating fu
tional

Z$c~n!%[K)
n

d$m̃c̈1ncċ1tc1v82z%detU dz

dc U L
~15!

being the average over the noisez(n) whered function ac-
counts for the equation of motion~14!, and the determinan
is Jacobian of transition fromz(n) to c(n) that is equal
Q/T[nc . Then, making use of the functional Laplace re
resentation

d$x~n!%5E
2 i`

i`

expS 2E px dnDDp~n!, ~16!

over a ghost fieldp(n) and averaging Eq.~15! over Gaussian
distribution

P0$z~n!%}expS 2
1

2E z2~n!dnD , ~17!

being related to Eqs.~13!, we derive to the standard form
@11#

Z$c~n!%5E P$c~n!,p~n!%Dp~n!, P[e2S; ~18!

S$c~n!,p~n!%[E L„c~n!,p~n!…dn, ~19!

where effective Lagrangian is introduced,

L5~m̃c̈1ncċ1tc1v8!~nc
21p!2 1

2 ~nc
21p!2. ~20!

According to Euler equations@19#

]L
]x

2
d

dn

]L
] ẋ

1
d2

dn2

]L
] ẍ

50, x[$c,p%, ~21!
02180
-

-

effective motion in the phase space is determined by
system

m̃c̈1ncċ52~tc1v8!1~nc
21p!, ~22!

m̃p̈2ncṗ52~t1v9!p. ~23!

A comparison of the first of these equations with Eq.~14!
shows that the conjugated momentump appears as the mos
probable value of the renormalized noise amplitudencz @14#.

III. SUPERSYMMETRY REPRESENTATION OF
CORRELATION IN OLIGOMER DISTRIBUTION

Equations~22! and ~23! represent a system of nonlinea
equations whose solution demands a use of the perturba
theory with respect to the self-action parametersl, m and of
the self-consistency procedure to determine an effec
massm̃$c(n)%. However, because we are interested in
knowledge not of laws of motionc(n) andp(n), but only of
the frequency of oligomer alternation along the homopo
mer chain, it is appropriate to restrict ourselves to an inv
tigation of the corresponding correlators. These reduce
autocorrelator, retarded and advanced Green functions
fined by the following equalities:

S~n2n8!5^dc~n! dc~n8!&,

G2~n2n8!5^dc~n!p~n8!&,

G1~n2n8!5^p~n! dc~n8!&;

dc~n![c~n!2 c̄, c̄[c~n!, ~24!

respectively. As is demonstrated in Appendix B, consequ
analytical consideration takes a canonical form if one int
duces a dual field@12–14#

f5dc1~nc
21p!q, ~25!

being built by making use of nilpotent variableq which
satisfies the conditions

q250, qq85q8q, E dq50, E q dq51.

~26!

As a result, the correlators~24! are reduced to the com
ponents of the supercorrelator

C~z,z8![^f~z!f~z8!&, z[$n,q% ~27!

of the state vectors~25! in the phase space. Indeed, the s
percorrelator~27! appears as a pseudovector

C5G1A1G2B1ST ~28!

spanned on set of the orts
3-4



y
o
ti-

n

-

de

rm

eld

ion

d

n
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A~q,q8!5q, B~q,q8!5q8, T~q,q8!51. ~29!

Introducing the functional product of some vectorsX, Y, Z in
such a space,

X~q,q8!5E Y~q,q9!Z~q9,q8!dq9, ~30!

it is easy to see that orts~29! are noncommutative to obe
the multiplication rules given in Table I. Thus, making use
the supercorrelator~27! presents a big advantage in analy
cal calculations.

Under suppression of the inhomogeneity fluctuatio
along the homopolymer chain~s50!, the action~19! with
the Lagrangian~20! written within the harmonic approxima
tion @v(c)5const# takes the canonical form

S0$f~z!%5
1

2E f~z!L~z!f~z!dz ~31!

with the linear operator

L~z!5t~n!1D~z!, t~n![t1m̄]n
2 , ]n

25
]2

]n2
,

~32!

D~z!52
]

]q
1ncS 122q

]

]q D ]

]n
. ~33!

As shows the consideration in Appendix B, this operator
fines the bare supercorrelator

C(0)~z![L21~z!d~q,q8!, d~q,q8!5q1q8 ~34!

to be governed by the Dyson equation~54!. Taking into ac-
count condition~B7!, one obtains

C(0)5
@t~n!2D#d~q,q8!

t2~n!2nc
2]n

2
. ~35!

Using Fourier transformation over the frequencyn, we ob-
tain the expression

C(0)5
11@t~n!2 incn#q1@t~n!1 incn#q8

t2~n!1nc
2n2

,

t~n![t2m̄n2. ~36!

Then, taking into account Eqs.~28! and~29!, we get standard
equalities for the main correlators

TABLE I. The table of the functional product of vectors~29!.

l\r T A B

T 0 T 0
A 0 A 0
B T 0 B
02180
f

s

-

G6
(0)5@t~n!6 incn#21,

S(0)[G1
(0)G2

(0)5@t2~n!1nc
2n2#21. ~37!

An explicit form of linear operator

L5L1A1L2B1LT ~38!

obeying the equalityL[(C(0))21 will be needed below. Us-
ing the equality@12#

C215G1
21A1G2

21B2G1
21SG2

21T, ~39!

we easily obtain the components

L65t~n!6 incn, L521. ~40!

To proceed, let us consider the effective interaction te
in action ~9!,

K̃[2T
s2

2 E E dn1dn2

~2p!2
n1

2n2
2uc~n1!u2uc~n2!u2, ~41!

taken in the frequency representation. Within the mean-fi
approximation, one has

uc~n1!u2uc~n2!u2⇒^uc~n1!u2&uc~n2!u21uc~n1!u2^uc~n2!u2&

5S~n1!uc~n2!u21uc~n1!u2S~n2!
~42!

and the fluctuational component of the inhomogeneity act
~41! takes the form

K̃$f%52TDE dn

2p
n2uf~n,q!u2qdq, ~43!

where parameterD̃ given by Eq.~11! reduces to average
magnitude

D5s2E dn

2p
n2S~n!⇒s2E dn

2p
n2C~n,q!qdq. ~44!

As a result, the bare massm̄ in the actionS0 given by Eqs.
~31! and ~32! is replaced by the effective quantity

me f[m̄2D, ~45!

being averaged value of the fluctuating mass~12!.
To finish supersymmetry representation of the action~19!

defined by the Lagrangian~20!, one should add to Eqs.~31!
and ~43! the self-action term

V$f~z!%5E v„f~z!…dz, z[$n,q% ~46!

with the expansion~5!. Then, the standard perturbatio
theory gives the symbolic expression@11#
3-5
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S~q1 ,q2 ,n!5
m2

2!
„C~q1 ,q2 ;n!…21

l2

3!
„C~q1 ,q2 ;n!…3

~47!

for the self-energy functionS(q1 ,q2 ,n) defined by the fol-
lowing equation for then-point dressed supercorrelator

C(n)~q,q8!5E E C(0)~q,q1!S (n)~q1 ,q2!

3C(0)~q2 ,q8!dq1dq2 . ~48!

However, detailed analysis@17# shows that the multipli-
cation rules given by Table I have to be replaced by the ru
of Table II. Then, the components of the pseudovector

S5S1A1S2B1ST ~49!

take the following forms:

S~n!5
m2

2 E dn1

2p
S~n1!S~n2n1!

1
l2

6 E E dn1dn2

~2p!2
S~n1!S~n2!S~n2n12n2!,

~50!

S6~n!5m2E dn1

2p
S~n1!G6~n2n1!

1
l2

2 E E dn1dn2

~2p!2
S~n1!S~n2!G6~n2n12n2!.

~51!

Making use of the theory of residues~see Appendix C! with
the correlators~37!, where the frequency dependent para
etert(n)[t2m̄n2 is replaced by the bare onet, one arrives
at the equalities~C5! and ~C6! which take the form

S.~8t3nc!
21F S m21

l2

32tnc
D 2S m2

22
1

l2

34tnc
D j2G ,

~52!

S6.~4t2nc!
21F S m21

l2

6tnc
D7

i

2 S m21
l2

32tnc
D j

2S m2

22
1

l2

2333tnc
D j2G ~53!

TABLE II. Conventional multiplication table of the Grassma
A, B and non-GrassmanT quantities@see Eq.~29!#.

T(q,q8) A(q,q8) B(q,q8)

T(q,q8) T(q,q8) A(q,q8) B(q,q8)
A(q,q8) A(q,q8) 0 0
B(q,q8) B(q,q8) 0 0
02180
s
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within the hydrodynamic limitj[n/vs!1, vs[t/nc .
As shows the consideration in Appendix B, self-consist

behavior of the system is described by the generalized Dy
equation

C215L2S. ~54!

In the component representation this equality arrives at
equations

S5~S2L !G1G2 , ~55!

G6
215L62S6 . ~56!

Combination of Eqs.~40!, ~52!, and~53! arrives at the final
equations for main correlators within the hydrodynamic
limit j!1,

G6
215Ft2~4t2nc!

21S m21
l2

6tnc
D G6 i F t1~8t2nc!

21

3S m21
l2

32tnc
D Gj2F t2me f

nc
2

2~4t2nc!
21

3S m2

22
1

l2

2333tnc
D Gj2. ~57!

To avoid misunderstanding, we would like to discuss t
physical meaning of the limitation caused by the use of
hydrodynamical limit. It might seem that its application cr
ates obstacles in the way of description of the mixtures w
high magnitudes of the oligomer concentrationsx;1. How-
ever, it would be right if we have used correlators of t
microscopic oligomer numbersc(n) itself, while definitions
~24! give the correlators in terms of the deviationsdc(n)
[c(n)2 c̄ from the mean valuec̄ @23#. This means we es
cape the necessity to average over small scales because
tuations in Eqs.~24! correlate essentially only within wea
segregation limit related to the hydrodynamical domain.

IV. DETERMINATION OF THE PERIOD
OF MICROPHASE STRUCTURE

Our consideration is based on the obvious equality for
long space periodL52l 1D where l is the oligomer chain
length, D is the thickness of the homopolymer layer bei
fixed by the inverse shareX21 of average number of the
hydrogen bonds~see Fig. 1!. Physically, this value is reduce
to the magnitude 2p/v determined by the circular frequenc
v in the alternation of the oligomer heads along the h
mopolymer chain. Then, the long space period is expres
by the following equality@5# ~see Appendix A!:

L52l 1D0v21, D0[~2px1/6n21/3!b>b, ~58!

wherex<1021 is the Flory parameter,n;10 is the number
of segments in oligomer chain, andb is the segment length

To obtain the frequencyv, one has to determine first th
effective massme f given by Eqs.~45! and ~44!. Using the
3-6
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theory of residues~see Appendix C! with the structure factor
~55! and Green function~57!, one arrives at the renormaliza
tion mass parameter

D5
s2

2me fnc
S 11

1

25

ncm
2

t4me f

1
1

23334

l2

t5me f
D , ~59!

where only the terms of the second order of smallness o
the parametersm,l of the self-action~5! are kept. Inserting
here Eqs.~12! and~45!, we obtain the equations for determ
nation of the effective mass as a function of the temperat

me f5mm̄, m5m~T!, ~60!

4m~12m!5
T

Tc0
S 11

a1b/T

m D , ~61!

where

Tc0[S m̄

s D 2Q

2
, a[

1

23334

l2

t5m̄
, b[

1

25

Qm2

t4m̄
.

~62!

Numerical solution of Eq.~61! for different values ofa and
b allows us to estimate the influence of the self-action on
effective mass. It turned out that even small variation of
parametera substantially changes the shape of the dep
dencem(T), whereas the parameterb almost does not affec
it, and we can putb50 for the sake of simplicity. This mean
physically that the cubic anharmonicity in the self-action p
tential energy~5! is irrelevant to the microphase separati
phenomenon.

The smallness of the self-action parametersa, b allows us
to solve Eq.~61! analytically. In doing so, one has to repla
the required dependencem(T) in the right-hand side of Eq
~61! by the bare dependence

m0~T!5
1

2 S 11A12
T

Tc0
D , ~63!

which is a solution of this equation ata5b50. As a result,
we obtain the simple dependence

m~T!5
1

2 S 11A12
T

Tc
D ~64!

with a characteristic temperature

Tc[Tc0~122a!, ~65!

where the scaleTc0 is given by the first of Eqs.~62! @the
multiplier should be putm0(Tc0).1/2 due to the smallnes
of the parametera!1]. According to Eq.~64!, with the
increase in temperature, the effective mass~60! decreases
monotonously from the bare magnitudem̄ at T50 to m̄/2 at
T5Tc ~see the main panel in Fig. 2!. The critical temperature
Tc determines the point of the order-disorder transition
cording to the condition
02180
er

e:

e
e
-

-

-

dm

dT
52`.

The resulting dependenceTc on the self-action parametera
is shown in the inset of Fig. 2. It is principally important th
the bigger the value of the self-action parametera, the more
narrow is the temperature domainTg–Tc where the mi-
crophase separated structure is possible (Tg being a glassing
temperature!. In other words, the self-action effect leads
the shrinking of the region of the ordered structure beca
the critical temperatureTc reaches the boundary magnitud
Tg with increasing ofa before the magnitudea.0.08.

The divergency conditionG2
2150 of the Green function

~57! gives the proper frequency

n056v2 iÃ, v[Av0
22Ã2 ~66!

of the oligomer alternation along the homopolymer cha
Real and imaginary parts are determined by the express

v0[
v̄0

Am~T!
F113aS 12

9

8

T2

T0
2D G ,

Ã[
v̄0

m~T!

T0

T F116aS 11
3

8

T2

T0
2D G , ~67!

where the dependencem(T) is defined by Eqs.~64! and~65!;
the effective mass in parentheses after the factora!1 is put
to be equal to the valuem̄/2 related to the critical tempera
ture Tc characteristic scales of both frequency and tempe
ture are introduced as follows:

v̄0[A t

m̄
, T0[

Q

2Am̄t
. ~68!

As a result, combination of Eqs.~58!, ~66!, and~67! leads to
the final result for the long space period

FIG. 2. Temperature dependence of the inhomogeneity par
eter m for different values of the self-action parametera: thick
curve relates toa50, thin one relates toa50.08 (Tc05337 K).
Inset: the temperature of order-disorder transitionTc vs the param-
etera.
3-7
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L52l 1
m~T!

Am~T!2~T0 /T!2

3F 11
3

2
a

118~T0 /T!21
9

4
~T0 /T!22

122~T0 /T!2
G L0 , ~69!

where the characteristic lengthL0[D0 /v̄0;Am̄/tx1/6b
}x1/6N1/2 is the function of both parametersx andN being
thermodynamically independent. Thus, the first of the ex
nents in the scaling relationL0}xaNb takes the magnitude
a51/6 inherent to the strong segregation regime, wher
the second one (b51/2) is the same for the weak one@20#.
Note that the obtainedx dependence is caused by the mu
plier x1/6 in the generic relation~58! that is relevant to the
former of the above regimes, while the method develop
addresses latter one.

V. DISCUSSION

The behavior of the system under consideration is c
trolled by the parametersm̄, t, ands which determine the
temperatureTc of the order-disorder transition and the lon
space periodL given by Eqs.~65! and ~69!, respectively.
Moreover, there is the self-action parameter 0,a!1 whose
value is limited by the magnitudeamax.0.08 ~see inset in
Fig. 2!. To guarantee positive values of the radicand in E
~69! at the critical temperatureTc , the above parameter
have to be constrained by the condition

k>A2 ~70!

limiting magnitudes of the principal parameter

k[
Tc

T0
5Atm̄S m̄

s D 2

~122a!. ~71!

The minimal magnitude ofk fixes the choice of the theor
parameters according to the condition

s<221/4m̄5/4t1/4~12a!. ~72!

It would seem from Eqs.~70! and ~71! that the decrease o
the critical temperatureTc with passing from the ionically
bonded system@such as P4VP-(DBSA)x] to the hydrogen
bonded one@e.g., P4VP-(PDP)x] is caused only by the
growth of the fluctuation parameters with respect to the
mean magnitude of the inhomogeneity parameterm̄. It ap-
pears, however, that the main reason for such behavio
given by the decrease of the mean-geometrical magni
Am̄t of the principal coefficients in the generic Lagrangi
~9! ~see below!.

To clarify this problem and find explicit form of the de
pendencies of the temperature of order-disorder transitionTc
and the periodL on the oligomeric fractionx, we assume for
main theory parametersm̄ and t the three-parametric rela
tions,
02180
-

as

d

-

.

is
de

m̄5m01Ax~xm2x!, t5t01Bx~xt2x! ~73!

with positive constantsm0 , t0 , A, B, xm , xt to be deter-
mined. Then, the fitting of the experimental results shown
Fig. 3 in accordance with Eq.~69! wheret, m̄ are given by
Eq. ~73! leads to the following results for the ionicall
bonded systems.

The mixtures P4VP-(DBSA)x :

m0518, A58, xm51.5;

t050.6, B51.5, xt51.0;

a50.01, b51 nm, l 510 nm. ~74!

The mixtures P4VP-@Zn(DBS)2#x :

m055.3, A526, xm51.6;

t050.8, B50.1, xt51.0;

a50.01, b51 nm, l 510 nm. ~75!

At x51 one obtainsm̄522, t50.6 for P4VP-(DBSA)x and
m̄520.9, t50.8 for P4VP-@Zn(DBS)2#x . Then, Eq.~71!
gives valuesk5103, 102 at s51.31, 4.18, respectively.

A much more complicated situation occurs in the wea
bonded system P4VP-(PDP)x . Here, decrease of the param
eter~71! results in the narrowing of the temperature doma
T0–Tc of the phase separation. All parameters for this cl
of systems can be determined by the combined fitting o
series of experimental data for the critical temperatureTc
and the long space periodL ~see Figs. 4–6!. First constraints
follow from the comparison of experimental points for th
temperatureTc of order-disorder transition~see Fig. 4! with
fitting results based on Eq.~65! at a50.01, l 510 nm:

FIG. 3. Long space period in the strongly bonded systems
function of the oligomeric fractionx. Solid lines represent the re
sults of fitting in accordance with Eq.~69!. Experimental data for
P4VP-(DBSA)x ~d! and P4VP-@Zn(DBS)2#x ~s! at room tempera-
ture are taken from Ref.@5#.
3-8
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Qm0
2

s2
5562,

A

m0
50.155, xm51.615. ~76!

The following parameters gives application of Eq.~69! for
the long space period at the temperatureT5Tc to the data
shown in Fig. 5 as the nonmonotonous curve:

m0

t0
51499,

B

t0
57.968, xt51.926. ~77!

Finally, making use of the expression~69! and experimenta
data for the temperature dependence of the long space p
given in Fig. 6 yields the last constraint

Q

Am0t0

5924. ~78!

FIG. 4. Order-disorder transition temperatureTc for the weakly
bonded system as a function of the oligomeric fractionx. The solid
line represents the dependence obtained by fitting according to
~65!. Experimental data for P4VP-(PDP)x ~j! are taken from Ref.
@4#.

FIG. 5. Long space period in the weakly bonded systems a
function of the oligomeric fractionx. Solid lines represent the re
sults of fitting in accordance with Eq.~69!. Experimental data for
P4VP-(PDP)x at temperature of order-disorder transitionTc ~j!
and at temperatureT580 °C ~h! are taken from Ref.@4#.
02180
iod

As a result, takingm051 at x51 the magnitudesA
50.155, Q523.87, s50.206 are obtained to provide a
extremely small valuet55.631023 of the hydrogen bond-
ing strength and the temperature scaleT05160. At a
50.01 this arrives at the rest of the parametersk52.07, l
56.2231026.

It is worthwhile to discuss separately the dependence
the long space period on the oligomer/monomer ratio at
temperatureT580 °C that relates to the monotonous deca
ing curve shown in Fig. 5. Because the maximal tempera
of the order-disorder transition isTc'65 °C, corresponing to
x50.85 ~see Fig. 4!, experimental data related toT580 °C
are obtained for the temperature being beyond of the reg
of the ordered structure (T.Tc). From the physical point of
view, at the critical temperatureT5Tc the periodicity of the
microphase separated structure formed is caused by l
range correlations, whereas atT580 °C only short-range
correlations hold to be determined by the homopolym
backbone together with the hydrogen bound surfactant m
ecules@4#. Fitting of the experimental points for the depe
denceL(x) at the temperatureT580 °C can be done on th
basis of Eq.~69! where one putsm(T)5m(Tc)51/2. Then,
the values of the parameters obtained differ from those
tained forT5Tc by the following constraints:

B

t0
54.2, xt53.27,

Q

Am0t0

5543. ~79!

Obviously, this difference is due to the temperature dep
dence of the hydrogen bonding parametert in the potential
energy~4!.

To conclude our estimations, we notice that the mo
developed explains successfully a vast variety of peculi
ties obtained experimentally for various classes
homopolymer-oligomer mixtures with the interactions of d
ferent strength. The data obtained for strong, intermedi
and weak coupled systems P4VP-(DBSA)x , P4VP-
@Zn(DBS)2#x and P4VP-(PDP)x , respectively, are given in

q.

a

FIG. 6. Temperature dependence of the long space period in
weakly bonded system. The solid line represents the depend
obtained by fitting according to Eq.~69!. Experimental data for
P4VP-(PDP)x at x50.85 ~s! are taken from Ref.@4#.
3-9
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Table III. It is seen that the coupling weakening gives rise
a decrease of both inhomogeneity parametersm̄ and s, as
well as the crucial decrease of the hydrogen bonding par
etert and the self-action parameterl, on the one hand, an
the characteristic temperaturesTc andQ, on the other hand
According to the relations~71! this leads to extremely larg
suppression of the value of the parameterk that causes the
crucial shrinking the temperature interval of the micropha
separation. An analogous effect is caused by the self-ac
increase.

To avoid misunderstanding, we would like to stress
composite character of the approach used. As it is mentio
in Introduction, this circumstance is expressed by divid
the total free energy~1! into two terms, the first oneFho is
relevant to the nonassociated homopolymer-oligomer m
ture, the second oneFhb is caused by the hydrogen bondin
These terms are caused by the interactions of principally
ferent physical nature: the behavior of the mixture of non
sociated homopolymers and oligomers is determined by
Flory parameterx, characterizing unfavorable interaction
between the oligomers and the rest of the system; the t
perature induced distribution of hydrogen bonds is de
mined by the parametert, giving the strength of this bond
ing. From the formal point of view, both of the abov
contributionsFho(x,f) and Fhb(t,x) should have similar
dependencies on the state parameters being~apart from the
temperature! the volume fraction of the homopolymerf for
the first contribution, and the oligomer/monomer ratiox for
the second one. Because the termFho;xf(12f) involves
the parabolic dependence on the parameterf bounded by
maximal valuef51, we took generalized parabolic ap
proximation~73! for the dependence of the hydrogen bon
ing strengtht on the oligomer/monomer ratiox which may
take valuesx.1.

TABLE III. Theoretical results for three types of homopolyme
oligomer systems involving weak, intermediate, and strong inte
tions ~see the text!.

P4VP-(DBSA)x P4VP-@Zn(DBS)2#x P4VP-(PDP)x

m0 18 5.3 1.000
A 8 26 0.155
xm 1.5 1.6 1.615
m̄ 22 20.9 1.095
t0 0.6 0.8 6.6731024

B 1.5 0.1 5.331023

xt 1.0 1.0 1.926
t 0.6 0.8 5.631023

s 1.31 4.18 0.206
a 0.01 0.01 0.01
l 3.33 6.66 6.2231026

Q(K) 103 103 23.87
Tc0(K) 1.413105 1.253104 337
Tc(K) 1.383105 1.223104 331
T0(K) 138 122 160
k 103 102 2.07
l (nm) 10 10 10
b(nm) 1 1 1
02180
o

-

e
on

a
ed
g

-

f-
-
e

-
r-

-

Apart from the above difference in the nature of the int
actions, one needs to emphasize at once the difference in
approaches used: the mixture of nonassociated homop
mers and oligomers had been studied within the strong s
regation limit @5#, whereas for the consideration of the h
drogen bonding we use the opposite approach. T
difference is kept if the Flory parameter takes large valu
x<1021, whereas the hydrogen bonding strength is re
tively small ~t!1!. Indeed, the formula~58! for the long
space period was obtained within the approximation of
sharp interface, whose thickness isD;x21/2b>3b to be rel-
evant to the strong segregation regime@5#. In the consider-
ation presented, we have focused mainly on the study of
hydrogen bonding on the base of the action~9! that has the
form of series in powers of the order parameterc and its
derivativesċ. Such an expansion supposes making use of
weak segregation limit corresponding to the small values
the parametersm̄ andt.

Finally, it is worthwhile to discuss a difference with a
usual picture of the phase transitions that is caused by
self-consistency condition~44!. A critical value of the Flory
parameterxc in usual copolymers is known to be caused
the self-action effects. Accounting for these effects involv
replacement of the bare parameterx by the renormalized
value x2xc @10#. However, in our case the value of Flor
parameter is so large that the temperature of the separatio
nonassociated polymer-oligomer mixture is negligibly sma
As a result, the role ofx passes to the hydrogen bondin
parametert which does not relate to the tendency of mon
mers of the different kinds to avoid each other. However,
is shown by the considerations given in Refs.@6,7#, under-
standing of the whole picture of microphase separation,
cluding the temperature dependence of the structure pe
demands accounting for the inhomogeneity in the distri
tion of oligomers along homopolymer chains. Within the a
proach developed, this is reached by means of the effec
kinetic energy~6!, with the mass fluctuating due to the tem
perature dependence of hydrogen bonding. This depend
leads to the reduction~45! of the effective massme f that
causes a phase transition from stochastic to periodic di
bution of the oligomers along the homopolymer chain. Ho
ever, if the critical point is fixed usually by the conditio
me f50 @11#, in our case the critical temperatureTc relates to
the finite magnitudeme f5m̄/2 of the effective mass which
has a singularitydme f /dT52` in the temperature deriva
tive ~see Fig 2!.
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APPENDIX A: DERIVATION OF A GENERIC RELATION
FOR MICROPHASE STRUCTURE PERIOD

Following Ref. @5# we suppose the period of the m
crophase structure to be determined by the minimum of
specific free energy

c-
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f [
1

V

Fint1Fstr

T
, V[LS, L[2l 1D, ~A1!

related to the first term in Eq.~1!. Being the free energy o
the homopolymer-oligomer mixture, this term consists of
interfacial and stretching componentsFint , Fstr measured in
the temperature unitsT per domain volumeV ~according to
Fig. 1 L, l, andD are the long space period, the length of t
oligomer tail, and the thickness of the homopolymer lay
respectively;S is the domain surface area!.

The interfacial free energy is stipulated by the loss
conformational entropy caused by the localization of the
mopolymer chains within the interface of thicknessD. Due
to unfavorable interactionx between the oligomer tails an
the polymer layer the chains form up loops containing s
ments of numberN s;x21 @21#. Then, within the model of
the random walk, the interface thickness is estimated by
relationsD2.N sb

2;b2/x where b is the segment length
Respectively, the interfacial free energyFint.NlT is deter-
mined by the numberNl.SD/N sb

3 of the loops within the
interface. As a result, we obtain the estimation

Fint;
x1/2

b2
TS. ~A2!

Another additionFstr is caused by the stretching of th
surfactant side chains, whereas the stretching of the
mopolymer chains enlarges only the volume part of the f
energy. This addition is expressed by the simple equa
Fstr.NcnsF1 where the first factorNc.DS/Nb3 gives the
number of chains per layer, the second multiplierns
.(b/l)N is the number of the oligomer molecules per cha
of N segments (l is period of the oligomers alternating alon
the chain! and the last factorF1;( l 2/nb2)T presents the free
energy of stretching a side chain ofn segments to a lengthl.
Combining the above multipliers, we find the estimation
the total free energy of stretching

Fstr;
l 2DS

nb4l
T. ~A3!

To derive the explicit expression for the dependence
the free energy~A1! on the layer thicknessD we need to use
an obvious condition 2lS[Ncnsvs where vs5nb3 is the
volume of the surfactant molecule. As a result, we obtain
relation

2l

D
[

b

l
n, ~A4!

according to which the periodl defines the rest of the geo
metrical characteristics of the microphase separated s
ture. Inserting Eqs.~A2!–~A4! into Eq. ~A1!, we obtain the
final expression for the interfacial free energy:
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x1/2

D
1

n

l3
D2

@11~b/l!n#b2
, ~A5!

where numerical coefficients are dropped. The minimizat
condition] f /]D50 arrives at the steady-state values of t
homopolymer layer thickness and the oligomer length

D;
x1/6

n1/3
l, 2l;~x1/6n2/3!b. ~A6!

It is convenient to express the above results by mean
the dimensionless frequency of the oligomer alternat
along the homopolymer chain:

v[
2p

l/b
5vmaxX, vmax[2p, X[

b

l
, ~A7!

whereX is the averaged oligomeric fraction per homopo
mer. So, the long space period of the microphase separ
structure takes the form

L[2l 1D.x1/6n21/3S n1
2p

v Db. ~A8!

APPENDIX B: INTRODUCTION TO THE
SUPERSYMMETRY FORMALISM

By analogy with the complex calculus, known conv
nience of the supersymmetrical calculus is based on a po
bility to lick relevant expressions into a canonical shape@11#.
In so doing, we write out in the Lagrangian~20! of the Eu-
clidean field theory the kinetick and the potentialp ener-
gies:

L5k1p, ~B1!

k[~m̃c̈1ncċ1tc!~nc
21p!2 1

2 ~nc
21p!2, ~B2!

p[nc
21 ]v

]c
p. ~B3!

To derive the kinetic energy in the canonical form type
Eq. ~31!,

k5
1

2E f~q!L~q!f~q!dq, L[S t1m̃
]2

]n2D 1D,

~B4!

we need to find the supersymmetry generatorD5D(q). In
general case, it is represented in the following way:

D[a1b
]

]q
1cq1dq

]

]q
, ~B5!

where the coefficientsa, b, c, d are functions of the deriva
tive ]/]n. Substitution of expressions~25! and~B5! into Eq.
3-11



y

po

-

e
s

n

an

pa

o-
or

the
om-
eld

y
to
se

re-

a-

hat

ion

OLEMSKOI, KRAKOVSKY, AND SAVELYEV PHYSICAL REVIEW E 69, 021803 ~2004!
~B4!, taking into account Eqs.~26!, leads to the required
expression~B2! with the values

a5nc

]

]n
, b521, c50,d522nc

]

]n
. ~B6!

As a result, operator~B5! takes the form~33!. It is easy to
prove that this operator is Hermitian and has the propert

D25nc
2 ]2

]n2
. ~B7!

To obtain the nilpotent form

p5
1

2E v„f~q!…dq, ~B8!

of the potential energy~B3!, we expand the potentialv(f) at
hand in powers of the term (nc

21p)q,

p5
1

2E Fv~c!1S nc
21]v

]c
pDqGdq. ~B9!

Here, all terms of higher order vanish because of the nil
tency condition. Given the properties of equalities~26!, the
integration in Eq.~B9! leads to the desired result~B3!.

When an infinitesimal incrementdf is added to the field
f, the action related to the Lagrangian~B1! with compo-
nents~B4! and~B8! acquires the zeroth addition if supersym
metric Euler equation is valid,

L
dL

d~Lf!
1

dL
df

50. ~B10!

Substituting here the expressions~B4! and~B8!, we arrive at
the supersymmetric equation of motion

Lf~z!1
dp

df~z!
50 ~B11!

that is reduced to the system~22!, ~23!. Multiplying Eq.
~B11! by the fieldf(z8) and averaging the result, we arriv
at the Dyson equation~54! where the self-energy function i
defined by the equality

S~z,z8!52E K dp

df~z!
f~z9!L C21~z9,z8!dz9.

~B12!

For performing immediate calculations it is much more co
venient to use the standard perturbation theory@11# that ar-
rives at the expressions~50!, ~51!.

It is worthwhile to note finally that the above Jacobi
reduced in Eq.~15! to the constant valuenc is relevant to the
weak segregation limit. Indeed, in the opposite case a
sage to the canonical representation type of Eq.~18! de-
mands introducing Grassmannian fieldsc̄(n), c(n) that ex-
pand the dual field~25! to the four-component form@11#

F5dc1 ūc1c̄u1~nc
21p!ūu, ~B13!
02180
-

-

s-

where anticommutating Grassmannian variablesū, u are
connected with the commutating nilpotent oneq by means
of the equalityq[ūu. In such a case, the equations of m
tion ~22! and ~23! are supplemented with two equations f
the conjugate fieldsc̄(n), c(n) whose combination arrives
at the continuity equation for a quantityN[^c̄c& playing
the role of the density of interface boundaries@14#. Thus, we
can conclude that the weak segregation limit related to
densityN50 means suppression of the Grassmannian c
ponents reducing the four-component supersymmetrical fi
~B13! to the two-component dual form~25!.

APPENDIX C: CALCULATIONS OF CONVOLUTION
INTEGRALS

a. Self-energy functions.Calculations of the self-energ
functions~50!, ~51! lead to a rather tedious procedure due
the convolution integrals. To demonstrate the line of the
calculations we consider in detail the simplest integral
lated to the first term in Eq.~51!,

S2
m ~n!5m2E dn1

2p
S~n1!G2~n2n1!. ~C1!

Making use of the expressions~37! for the structure factorS
and Green functionG2 , where the frequency dispersed p
rametert(n) is replaced by its bare magnitudet, one arrives
at the convolution integral

S2
m ~n!5

m2

2pnc
3E dn1

~vs
21n1

2!@vs2 i ~n2n1!#
, ~C2!

where a characteristic frequencyvs[t/nc is introduced.
This integral has the poles6 ivs andn1 ivs @see Fig. 7~a!#.
In accordance with the theory of residues@22#, the integral in
Eq. ~C2! is reduced to sum over two of these residues t
locate in upper half-plane of the complex frequencyn1,

2p i F 2 i

2ivs~2n!
1

2 i

n~n12ivs!
G , ~C3!

where terms in the square brackets relate to the polesivs and
n1 ivs , respectively. After a simple algebra this express
yields

FIG. 7. Poles of the convolution integral in Eqs.~C2!~a! and
~C7!~b!. d[Aj2

22j1
2.
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S2
m 5

m2

t2nc

11
i

2
j

41j2
, j[

n

vs
. ~C4!

Analogously, the rest of convolution integrals are calcula
giving final form of Eqs.~50! and ~51!:

S5
m2

2t3nc

1

41j2
1

l2

8t4nc
2

1

91j2
, ~C5!

S65
m2

t2nc

17
i

2
j

41j2
1

l2

8t3nc
2

37 i j

91j2
. ~C6!

b. Renormalization mass parameter.Explicit form of the
renormalization mass parameter~44! is determined by the
structure factor~55! and Green function~57! with the effec-
tive mass~45! and parametert(n) being replaced by baret,

D5
s2

pncme f
E ~j12j0

21j2!j2dj

~j222i j1j2j2
2!~j212i j1j2j2

2!
,

~C7!
R.

d

ett

es

a

02180
d

where one denotes

j0[
16me ft

nc
S m2

4
1

l2

34tnc
D 21

,

j1[
nc

2

2me ft
F11

1

8t3nc
S m21

l2

9tnc
D G ,

j2
2[

nc
2

me ft
F12

1

4t3nc
S m21

l2

6tnc
D G . ~C8!

The integral in Eq.~C7! has the pole structure that is show
in Fig. 7~b!. As above, the sum over residues located in
upper half-plane of the complex frequencyj yields the inte-
gral value

p

2 S 12
j2

224j1
2

j0j1
D . ~C9!

Accounting for the notices~C8! and keeping only the term
of the second order of smallness over parametersm andl,
one obtains the final expression~59!.
-
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